Search results

Search for "gas storage" in Full Text gives 24 result(s) in Beilstein Journal of Nanotechnology.

Metal-organic framework-based nanomaterials for CO2 storage: A review

  • Ha Huu Do,
  • Iqra Rabani and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 964–970, doi:10.3762/bjnano.14.79

Graphical Abstract
  • prepare Cu-based MOF nanoparticles (UHM-30) for gas storage, as depicted in Figure 2 [27]. The benefit of this strategy is the generation of both OMSs and LBCs, resulting in an enhanced CO2 adsorption capacity for UHM-30 (5.26 mmol·g−1) compared to HKUST-1 (4.69 mmol·g−1). The effectiveness of amino
  • an intriguing strategy for enhancing gas storage and gas separation, encompassing species such as CH4, CO2, and N2. This approach involves the introduction of additional linkers to divide large pores into smaller compartments [33]. PSP not only offers an increased number of active sites but also
  • gas storage. For instance, Zhang et al. used ethylenediamine to functionalize ZIF-8, resulting in enhanced CO2 adsorption and selectivity [36]. A benefit of this approach is that the surface area was improved (nearly 40%), while ED-ZIF-8 yielded a two-fold higher amount of adsorbed CO2 than pure ZIF-8
PDF
Album
Review
Published 20 Sep 2023

Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO2: A review

  • Ha Huu Do and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 904–911, doi:10.3762/bjnano.14.74

Graphical Abstract
  • from metal ions and organic linkers, and have been identified as prospective materials for CO2RR [21]. Therefore, a multitude of MOFs structures have been explored in experimental studies [22][23], exhibiting diverse applications such as gas storage [24], electrocatalysis [25][26][27], glucose sensing
PDF
Album
Review
Published 31 Aug 2023

Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation

  • Season S. Chen,
  • Zhen-Jie Yang,
  • Chia-Hao Chang,
  • Hoong-Uei Koh,
  • Sameerah I. Al-Saeedi,
  • Kuo-Lun Tung and
  • Kevin C.-W. Wu

Beilstein J. Nanotechnol. 2022, 13, 313–324, doi:10.3762/bjnano.13.26

Graphical Abstract
  • ]. Given these structural properties, MOFs are widely applied to gas storage [18], gas/liquid separation [18][19][20], energy storage [21][22][23], sensing [24], catalysis [25], electrochemistry [26], and bio-related fields [27]. Zeolitic imidazolate frameworks (ZIFs), a subclass of MOFs, comprise
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2022

Simulations of the 2D self-assembly of tripod-shaped building blocks

  • Łukasz Baran,
  • Wojciech Rżysko and
  • Edyta Słyk

Beilstein J. Nanotechnol. 2020, 11, 884–890, doi:10.3762/bjnano.11.73

Graphical Abstract
  • problems in the chemical industry such as gas storage, chemical sensing, and drug delivery [1][2][3]. Thus, this field has very recently gained particular interest in both experimental and theoretical studies, which was followed by a vast amount of papers devoted to investigating these phenomena. Thanks to
PDF
Album
Full Research Paper
Published 08 Jun 2020

Nanostructured and oriented metal–organic framework films enabling extreme surface wetting properties

  • Andre Mähringer,
  • Julian M. Rotter and
  • Dana D. Medina

Beilstein J. Nanotechnol. 2019, 10, 1994–2003, doi:10.3762/bjnano.10.196

Graphical Abstract
  • ][41][42][43][44][45]. Thereby, they are attractive synthesis targets for a large variety of applications, including gas storage and separation, chemical sensing, thermoelectrics, capacitors, transistors or photovoltaics [46][47][48][49][50][51][52]. Due to their exceptional variety of structural
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2019

Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework

  • Manuel Souto,
  • Joaquín Calbo,
  • Samuel Mañas-Valero,
  • Aron Walsh and
  • Guillermo Mínguez Espallargas

Beilstein J. Nanotechnol. 2019, 10, 1883–1893, doi:10.3762/bjnano.10.183

Graphical Abstract
  • constructed from metallic nodes and organic linkers, have been a major breakthrough in chemistry in the last decades [1][2]. Because of their immense structural and functional possibilities, this class of hybrid materials finds several applications in, for example, gas storage and separation, sensing or
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2019

Long-term entrapment and temperature-controlled-release of SF6 gas in metal–organic frameworks (MOFs)

  • Hana Bunzen,
  • Andreas Kalytta-Mewes,
  • Leo van Wüllen and
  • Dirk Volkmer

Beilstein J. Nanotechnol. 2019, 10, 1851–1859, doi:10.3762/bjnano.10.180

Graphical Abstract
  • temperature, vacuum and acid-induced framework decomposition was also investigated. The controlled gas release using elevated temperature has the additional benefit that the host MOF can be reused for further gas capture cycles. Keywords: benzobistriazole; gas storage; kinetic trapping; metal–organic
  • as promising materials for gas storage of attractive fuel gases such as hydrogen [6][7][8] or methane [9][10][11]. In these applications the gas is adsorbed inside the pores. To enhance the guest adsorption in MOFs, several different approaches have been introduced over the last few years. These
  • released and after one month more than 67% was lost. Keeping these results in mind we were curious if it was possible to permanently trap (i.e., imprison) gas inside the MOF without observing any leaking at normal conditions, thus enabling the use of MOFs as a gas storage container for dangerous gases. In
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2019

The impact of crystal size and temperature on the adsorption-induced flexibility of the Zr-based metal–organic framework DUT-98

  • Simon Krause,
  • Volodymyr Bon,
  • Hongchu Du,
  • Rafal E. Dunin-Borkowski,
  • Ulrich Stoeck,
  • Irena Senkovska and
  • Stefan Kaskel

Beilstein J. Nanotechnol. 2019, 10, 1737–1744, doi:10.3762/bjnano.10.169

Graphical Abstract
  • , research in the area of metal–organic frameworks (MOFs) has delivered various record-holding materials in terms of surface area [1] and gas storage [2] and has also given rise to unprecedented adsorption phenomena [3] often associated with structural transitions. An increasing number of the so-called
PDF
Album
Supp Info
Full Research Paper
Published 20 Aug 2019

Playing with covalent triazine framework tiles for improved CO2 adsorption properties and catalytic performance

  • Giulia Tuci,
  • Andree Iemhoff,
  • Housseinou Ba,
  • Lapo Luconi,
  • Andrea Rossin,
  • Vasiliki Papaefthimiou,
  • Regina Palkovits,
  • Jens Artz,
  • Cuong Pham-Huu and
  • Giuliano Giambastiani

Beilstein J. Nanotechnol. 2019, 10, 1217–1227, doi:10.3762/bjnano.10.121

Graphical Abstract
  • therefore covers a wide range of applications in (photo-/electro-)catalysis, gas storage and separation technologies as well as energy storage devices. Among nanocarbons, (nano)porous organic polymers (POPs) have gained a significant popularity because of their unique features [4][5][6][7][8]. Indeed, the
  • as N, S and O) [14][15]. Major application fields of CTFs are represented by energy storage and conversion [16][17][18], gas storage and separation (e.g., H2, CO2 and CH4) [19][20][21] as well as various catalytic uses [22][23][24][25][26][27][28][29][30]. The exceptional performance of CTFs in
  • capture and storage of CO2 has prompted us to further exploit their potentiality in that direction through a judicious tuning of their ultimate structural and chemical properties. While the gas-storage capacity of a solid is mainly influenced by its porosity and accessible surface area [31][32], the Lewis
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2019

A highly efficient porous rod-like Ce-doped ZnO photocatalyst for the degradation of dye contaminants in water

  • Binjing Hu,
  • Qiang Sun,
  • Chengyi Zuo,
  • Yunxin Pei,
  • Siwei Yang,
  • Hui Zheng and
  • Fangming Liu

Beilstein J. Nanotechnol. 2019, 10, 1157–1165, doi:10.3762/bjnano.10.115

Graphical Abstract
  • knowledge, the synthesis of rod-like Ce-doped ZnO (abbreviated as CZO [9]) by pyrolysis derived from ZIF-8 (a zeolitic imidazolate framework, ZIF) has not been reported. As one of the most frequently used MOFs, ZIF-8 (2-methylimidazole zinc salt) has potential applications in gas storage, catalysis, etc
PDF
Album
Full Research Paper
Published 03 Jun 2019

Ultrathin hydrophobic films based on the metal organic framework UiO-66-COOH(Zr)

  • Miguel A. Andrés,
  • Clemence Sicard,
  • Christian Serre,
  • Olivier Roubeau and
  • Ignacio Gascón

Beilstein J. Nanotechnol. 2019, 10, 654–665, doi:10.3762/bjnano.10.65

Graphical Abstract
  • applications [5], including gas storage [6], membranes for separation processes [7], heterogeneous catalysis [8], sensing [9] or drug delivery [10], among others. Many of these applications require the formation of MOF films onto different kinds of surfaces with precise control of film thickness and
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2019

Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate) core–shell composite nanoparticles

  • Dafu Wei,
  • Youwei Zhang and
  • Jinping Fu

Beilstein J. Nanotechnol. 2017, 8, 1897–1908, doi:10.3762/bjnano.8.190

Graphical Abstract
  • –shell nanoparticles; emulsion polymerization; polyacrylonitrile; Introduction Due to their high specific surface area, chemical inertness, good mechanical stability and unique electrical properties, carbon nanospheres have numerous potential applications in nanocomposites [1], gas storage [2], lithium
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2017

Hierarchically structured nanoporous carbon tubes for high pressure carbon dioxide adsorption

  • Julia Patzsch,
  • Deepu J. Babu and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2017, 8, 1135–1144, doi:10.3762/bjnano.8.115

Graphical Abstract
  • selective hydrofluoric acid (HF) etching was used, which leads to pure carbon tubes. Due to their high surface area and porous nature, the carbon tubes are an interesting material for gas storage applications. Consequently, high pressure gas adsorption studies of carbon dioxide were carried out on this
  • reduced mass (Ω) given by: mmol/g, where ρ1 and ρ2 are the bulk density of CO2 before and after expansion, respectively, in kg/m3. V1 and V2 represent the volume of the gas storage chamber and adsorption chamber, respectively, in cm3, m* is the sample mass expressed in g and M is the molar mass of CO2
PDF
Album
Full Research Paper
Published 24 May 2017

Filling of carbon nanotubes and nanofibres

  • Reece D. Gately and
  • Marc in het Panhuis

Beilstein J. Nanotechnol. 2015, 6, 508–516, doi:10.3762/bjnano.6.53

Graphical Abstract
  • unique structure is clearly visible in the microscopy image (Figure 1b,d) and the schematic representation (Figure 1c). The filling of these specific tubular carbon nanostructures (TCNSs) has attracted much interest due to their applications in gas storage (in particular H2) [32][33], electrochemical
PDF
Album
Review
Published 19 Feb 2015

Quasi-1D physics in metal-organic frameworks: MIL-47(V) from first principles

  • Danny E. P. Vanpoucke,
  • Jan W. Jaeken,
  • Stijn De Baerdemacker,
  • Kurt Lejaeghere and
  • Veronique Van Speybroeck

Beilstein J. Nanotechnol. 2014, 5, 1738–1748, doi:10.3762/bjnano.5.184

Graphical Abstract
  • , and chemical tunability, through the choice of nodes and linkers, makes them versatile materials that are receiving an exponentially growing interest with a special focus on industrial, chemically oriented processes, such as catalysis, sensing, gas separation and gas storage [1][2][3][4][5][6][7][8][9
  • [44]. Because of the rigid nature of MIL-47(VIV) under standard breathing conditions it is often used as a material for comparison in studies of breathing (due to sorption) of other MOFs [3][7][10][13][51][52]. In addition, the 1D pores of MIL-47(V) make this material well-suited for gas storage and
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2014

Nanoporous composites prepared by a combination of SBA-15 with Mg–Al mixed oxides. Water vapor sorption properties

  • Amaury Pérez-Verdejo,
  • Alvaro Sampieri,
  • Heriberto Pfeiffer,
  • Mayra Ruiz-Reyes,
  • Juana-Deisy Santamaría and
  • Geolar Fetter

Beilstein J. Nanotechnol. 2014, 5, 1226–1234, doi:10.3762/bjnano.5.136

Graphical Abstract
  • over the SBA-15 promotes composites with a high BET specific surface area and enhanced water sorption abilities. Therefore, it can also favor, for instance, the adsorption of hydrophilic reactants in catalytic reactions, in gas storage or during the use as controlled molecular delivery materials
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2014

Tensile properties of a boron/nitrogen-doped carbon nanotube–graphene hybrid structure

  • Kang Xia,
  • Haifei Zhan,
  • Ye Wei and
  • Yuantong Gu

Beilstein J. Nanotechnol. 2014, 5, 329–336, doi:10.3762/bjnano.5.37

Graphical Abstract
  • for the application as fuel cell electrocatalyst, in field-effect transistors, and in lithium batteries. Thus, especially N-doped nanotube–graphene hybrid structures have been envisioned to have promising potential applications in the field of catalysis, gas storage and energy storage [16]. The
PDF
Album
Full Research Paper
Published 20 Mar 2014

Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting

  • Tatjana Ladnorg,
  • Alexander Welle,
  • Stefan Heißler,
  • Christof Wöll and
  • Hartmut Gliemann

Beilstein J. Nanotechnol. 2013, 4, 638–648, doi:10.3762/bjnano.4.71

Graphical Abstract
  • tailored for the corresponding application. As a particulate system this class of material is already applied in the field of nanotechnology, e.g., for gas storage and gas separation [6][7][8], catalysis [9], delivery of therapeutic agents [10][11][12] and sensor devices [13]. Presently, more advanced
PDF
Album
Full Research Paper
Published 11 Oct 2013

Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?

  • Baran Eren,
  • Dorothée Hug,
  • Laurent Marot,
  • Rémy Pawlak,
  • Marcin Kisiel,
  • Roland Steiner,
  • Dominik M. Zumbühl and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2012, 3, 852–859, doi:10.3762/bjnano.3.96

Graphical Abstract
  • whether these blisters still contain hydrogen gas underneath them during storage of HOPG under ambient conditions. Similar blister formation was observed after thermal sorption of hydrogen into graphite, and hydrogen gas storage was claimed by thermal desorption experiments [31]. AFM topography images of
PDF
Album
Full Research Paper
Published 13 Dec 2012

The oriented and patterned growth of fluorescent metal–organic frameworks onto functionalized surfaces

  • Jinliang Zhuang,
  • Jasmin Friedel and
  • Andreas Terfort

Beilstein J. Nanotechnol. 2012, 3, 570–578, doi:10.3762/bjnano.3.66

Graphical Abstract
  • surfaces, which are accessible by guest molecules. Based on this, MOFs have already demonstrated their potential for gas storage/separation [1], heterogeneous catalysis [2], molecular recognition [3], and sensing [4]. Some of these applications, such as gas storage, require the bulk preparation of the
PDF
Album
Full Research Paper
Published 02 Aug 2012

Micro- and mesoporous solids: From science to application

  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2011, 2, 774–775, doi:10.3762/bjnano.2.85

Graphical Abstract
  • , geometry and pore dimensions make these materials outstanding with respect to, e.g., catalytic reaction processes, in the area of sensorics, photonics and gas storage (Figure 1). In the realm of gas storage, mesoporous metal–organic frameworks (MOFs) appeared on the scene a couple of years ago and have
PDF
Album
Editorial
Published 30 Nov 2011

Studies towards synthesis, evolution and alignment characteristics of dense, millimeter long multiwalled carbon nanotube arrays

  • Pitamber Mahanandia,
  • Jörg J. Schneider,
  • Martin Engel,
  • Bernd Stühn,
  • Somanahalli V. Subramanyam and
  • Karuna Kar Nanda

Beilstein J. Nanotechnol. 2011, 2, 293–301, doi:10.3762/bjnano.2.34

Graphical Abstract
  • surface area and a high aspect ratio, such as, e.g., field electron emitters [2], gas storage media [3], or chemical sensors [4]. Thus, several approaches have been undertaken to obtain long, aligned CNTs over the last decade or so [5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22
PDF
Album
Full Research Paper
Published 14 Jun 2011

Novel acridone-modified MCM-41 type silica: Synthesis, characterization and fluorescence tuning

  • Maximilian Hemgesberg,
  • Gunder Dörr,
  • Yvonne Schmitt,
  • Andreas Seifert,
  • Zhou Zhou,
  • Robin Klupp Taylor,
  • Sarah Bay,
  • Stefan Ernst,
  • Markus Gerhards,
  • Thomas J. J. Müller and
  • Werner R. Thiel

Beilstein J. Nanotechnol. 2011, 2, 284–292, doi:10.3762/bjnano.2.33

Graphical Abstract
  • ; fluorescence; scandium; MCM-41; Introduction Mesoporous silicates are widely used for a variety of applications such as gas storage and heterogeneous catalysis, e.g., the synthesis of ε-caprolactam [1], or the decomposition of nitrous oxides [2]. MCM-41, MCM-48 and other silica materials can normally be
PDF
Album
Full Research Paper
Published 09 Jun 2011

On the reticular construction concept of covalent organic frameworks

  • Binit Lukose,
  • Agnieszka Kuc,
  • Johannes Frenzel and
  • Thomas Heine

Beilstein J. Nanotechnol. 2010, 1, 60–70, doi:10.3762/bjnano.1.8

Graphical Abstract
  • ; energetic and electronic properties; layer stacking; XRD; Introduction In the past decade, considerable research efforts have been expended on nanoporous materials due to their excellent properties for many applications, such as gas storage and sieving, catalysis, selectivity, sensoring and filtration [1
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities